Elementary inequalities that involve two nonnegative vectors or functions.
نویسندگان
چکیده
We report 96 inequalities with common structure, all elementary to state but many not elementary to prove. If n is a positive integer, a = (a1,..., an) and b = (b1,..., bn) are arbitrary vectors in R(+)n=[0,infinity)n, and rho(mij) is the spectral radius of an n x n matrix with elements m(ij), then, for example: [equation: see text]. The second inequality is obtained from the first inequality by replacing min with max and x with + and by reversing the direction of the inequality. The third inequality is obtained from the first by replacing the summation by the spectral radius. The fourth inequality is obtained from the first by taking each summand as a coefficient in a quadratic form. The fifth inequality is obtained from the first by replacing both outer summations by products, min by x, x by +, and the nonnegative vectors a and b by nonnegative measurable functions f and g. The proofs of these inequalities are mysteriously diverse.
منابع مشابه
Modeling Poset Convex Subsets
A subset S of a poset (partially ordered set) is convex if and only if S contains every poset element which is between any two elements in S. Poset convex subsets arise in applications that involve precedence constraints, such as in project scheduling, production planning, and assembly line balancing. We give a strongly polynomial time algorithm which, given a poset and element weights (of arbi...
متن کاملLinear Inequalities for Enumerating Chains in Partially Ordered Sets
We characterize the linear inequalities satisfied by flag f -vectors of all finite bounded posets. We do the same for semipure posets. In particular, the closed convex cone generated by flag f -vectors of bounded posets of fixed rank is shown to be simplicial, and the closed cone generated by flag f -vectors of semipure posets of fixed rank is shown to be polyhedral. The extreme rays of both of...
متن کاملOn sublinear inequalities for mixed integer conic programs
This paper studies K-sublinear inequalities, a class of inequalities with strong relations to K-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of K-sublinear inequalities. That is, we show that when K is the nonnegative orthant or the second-order cone, K-sublinear inequalities together with the original conic constraint are always sufficient ...
متن کاملSub-bernoulli Functions, Moment Inequalities and Strong Laws for Nonnegative and Symmetrized
This paper concerns moment and tail probability inequalities and the strong law of large numbers for U-statistics with nonnegative or symmetrized kernels and their multisample and decoupled versions. SubBernoulli functions are used to obtain the moment and tail probability inequalities, which are then used to obtain necessary and sufficient conditions for the almost sure convergence to zero of ...
متن کاملHadamard-type Inequalities for Quasiconvex Functions
Recently Hadamard-type inequalities for nonnegative, evenly quasiconvex functions which attain their minimum have been established. We show that these inequalities remain valid for the larger class containing all nonnegative quasiconvex functions, and show equality of the corresponding Hadamard constants in case of a symmetric domain.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 42 شماره
صفحات -
تاریخ انتشار 2004